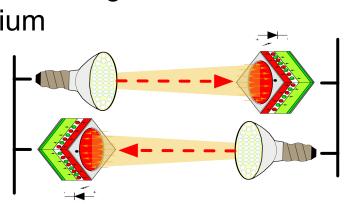


INSTITUTE OF COMMUNICATION, INFORMATION AND PERCEPTION TECHNOLOGIES Scuola Superiore Sant'Anna

cmit

Development of IEEE802.15.7 based ITS services using low cost embedded systems

Alessio Bellè^(*), <u>Mariano Falcitelli</u>^(**), Matteo Petracca^(**), Paolo Pagano^(**)


^(*)TeCIP Institute - Scuola Superiore Sant'Anna - Pisa, ITALY ^(**)CNIT - National Laboratory of Photonic Networks Pisa, ITALY

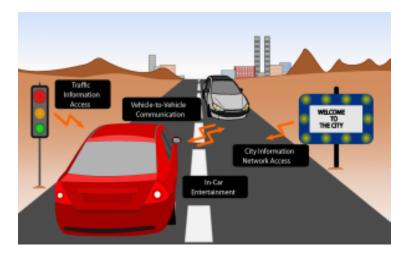
Tampere, Finland, November 7th, 2013

Introduction: Visible Light Communication (VLC)

- VLC: Communication technology using Visible Light (380 – 780 nm) as the transmission medium
 - Unlicensed spectrum
 - No electromagnetic interference
 - Security
 - Eye safety, Healthy
- Transmitters: LEDs, Laser
- Receivers: Photodiodes, CMOS sensors
- Channel: free space
- Applications:
 - Indoor Networking Systems
 - Indoor Positioning Systems
 - Underwater VLC
 - Intelligent Transportation Systems

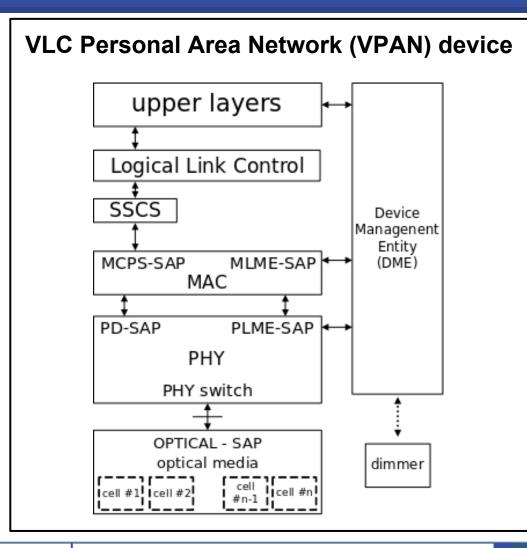
Tampere, Finland, November 7th, 2013

Motivations: VLC inside ITS


- Traffic signals and vehicles are gradually changing from electric light bulbs to LED light.
- LED light infrastructure can enable V2V, V2I, and I2I communications at large scale and low cost.

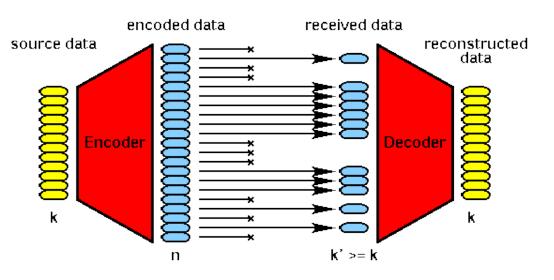
VLC may be a valuable option respect to

RF in case of:


 broadcast storm

- platooning

Outdoor VLC challenges: - Mobility disturbs Line-of-Sight **Optimize lighting** positioning - Sunlight, artificial lights, smog Use optical filters and optimized electronics


IEEE Std 802.15.7[™] - 2011

- Standard for local and metropolitan area networks - Short-Range Wireless Optical Communication Using Visible Light
- MAC and **multiple PHY** layers:
 - <mark>PHY I (outdoor)</mark>,
 - PHY II e PHY III (indoor)
- Data rate: <u>11.67 266 kb/s (PHY I)</u>
 1.25 96 Mb/s (PHY II, PHY III)
- Max MPDU: 1kB (PHY I), 64kB (PHY II, PHY III)
- Topologies: broadcast, star, p2p
- Beaconless and beacon-enabled mode
- Visibility and color function support
- Dimming and flicker-mitigation support

VLC Outdoor: FEC Issue

Outdoor, many accidental physical agents (smog, rain, sudden change of brightness, transiting objects, ...) can disturb the communication channel.

Forward Error Correction:

- sender encodes the message in a redundant way by inserting symbols and patterns
- receiver tries to correct the errors, if any, using the known structure of the added data

Different FEC codes are suitable for different conditions.

- Developing a Half-Duplex VLC device
 - Low-cost
 - Off-the-shelf components
 - Standard-compliant (IEEE802.15.7 MAC & <u>PHY I</u>)
- Vision: <u>first step</u> towards
 - scalable and pervasive VLC units eligible to be easily integrated in more complex systems like ITS.

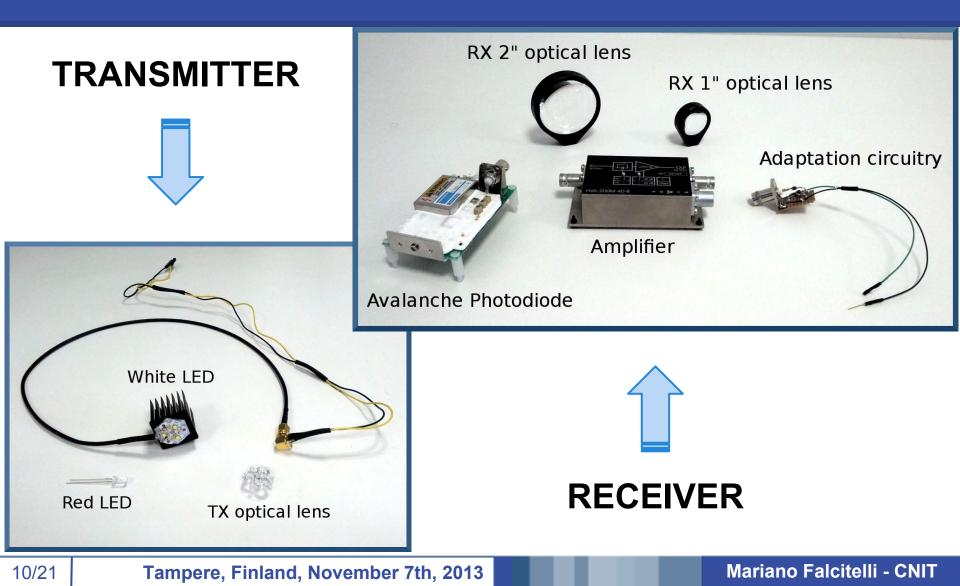
Methodology

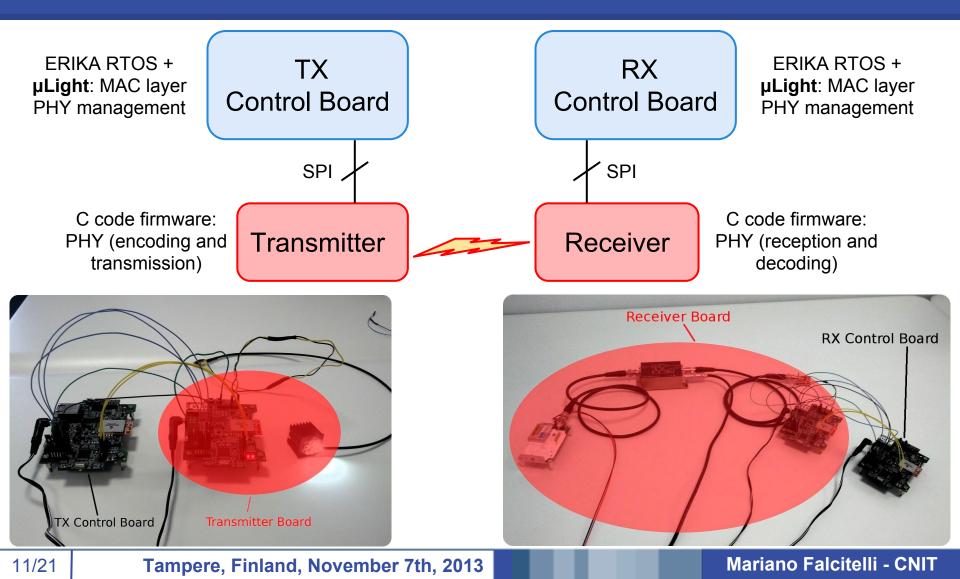
- Study of the standard
- Developing HW and SW prototype
- Experimental evaluation:
 - Test Bench Measurements
 - Open Field Measurements

Tools: SEED-EYE Board

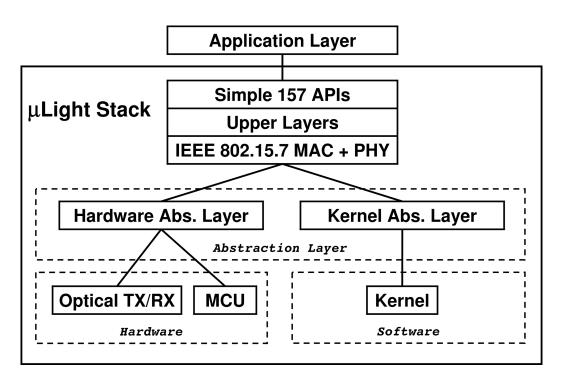
- Wireless Sensor Network node for C-ITS
- In house developed (part of the IPERMOB ITS project)
- MCU: Microchip
 PIC32MX795F512L
 - **80 MHz**
 - 512 K Flash ROM, 128 K RAM
 - Interfaces: SPI, UART, I2C, CAN
- IEEE 802.15.4 interface with Microchip MRF24J40MB RF transceiver
- IEEE 802.3 interface for wired LAN communications

Tools: SW development environment


- Open source Free Real-Time Operating System OSEK/VDX_compliant (Standard for automotive embedded systems)
- Highly modular, small footprint: minimal 1-4 Kb Flash real-time kernel, for 8 to 32 bit MCPU
- Portable APIs for different microcontrollers (tasks, events, alarms, resources, application modes, semaphores, ...)


9/21

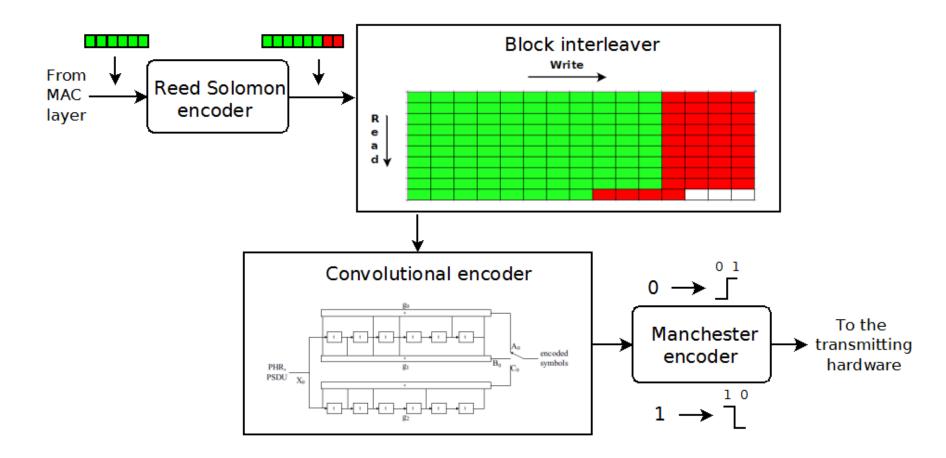
Microchip Integrated Development Environment
 Programming directly the MCU without OS


Tools: Optical components

System Overview

Control Board: µLight stack for Erika RTOS

- µLight implements
 IEEE 802.15.7 MAC
 layer and PHY
 management tasks on
 the Control Boards
- Library *ad hoc* developed for Erika RTOS
- A driver for Tx/Rx devices is included
- Inspired by µWireless (IEEE 802.15.4 library for ERIKA RTOS)
- Shipped with a high level API library


Tx/Rx Devices: implemented tasks

- The firmware developed in C enables the following tasks @ PHY layer:
 - Activation and deactivation of the VLC transceiver
 - ✓ Wavelength Quality Indicator for received frames
 - Data transmission and reception
 - ✓ Error correction
 - Synchronization

Tx/Rx Devices: the PHY I specification

- IEEE 802.15.7 <u>PHY I</u> is targeted towards applications requiring low data rates
- Header shall be sent at 11.67 kb/s if the 200 kHz optical clock rate is selected or at 35.56 kb/s if the 400 kHz optical clock rate is selected.
- Support for 11.67 kb/s at 200 kHz optical clock is mandatory.

IEEE 802.15.7 reference channel coding for PHY I

15/21

Mariano Falcitelli - CNIT

Tx/Rx: implemented coding support for error correction

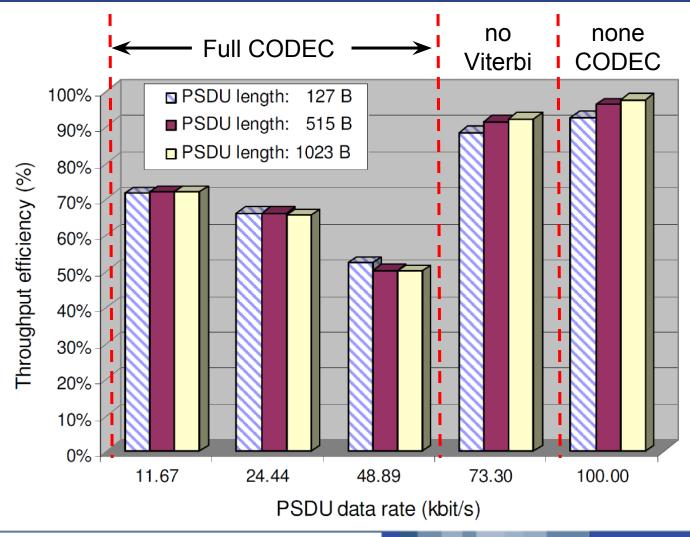
Transmitter

Receiver

	Modulation	RLL code	Optical clock rate	Forward Error Correction		Data Rate		DECODER	
				Outer Code	Inner Code	[kbps]		DECODER	
	OOK	Manchester	200 kHz	R-S (15,7)	CC (¼)	11.67		Viterbi	R-S (15,7)
				R-S (15,11)	CC (1/3)	24.44		Viterbi	R-S (15,11)
				R-S (15,11)	CC (² / ₃)	48.89	Viterbi	R-S (15,11)	
				R-S (15,11)	none	73.30		none	R-S (15,11)
				none	none	100		none	none
	VPPM	4B6B	400 kHz	R-S (15,2)	none	35.56		none	R-S (15,2)
				R-S (15,4)	none	71.11		none	R-S (15,4)
				R-S (15,7)	none	124.4		none	R-S (15,7)
				none	none	266.6	none	none	

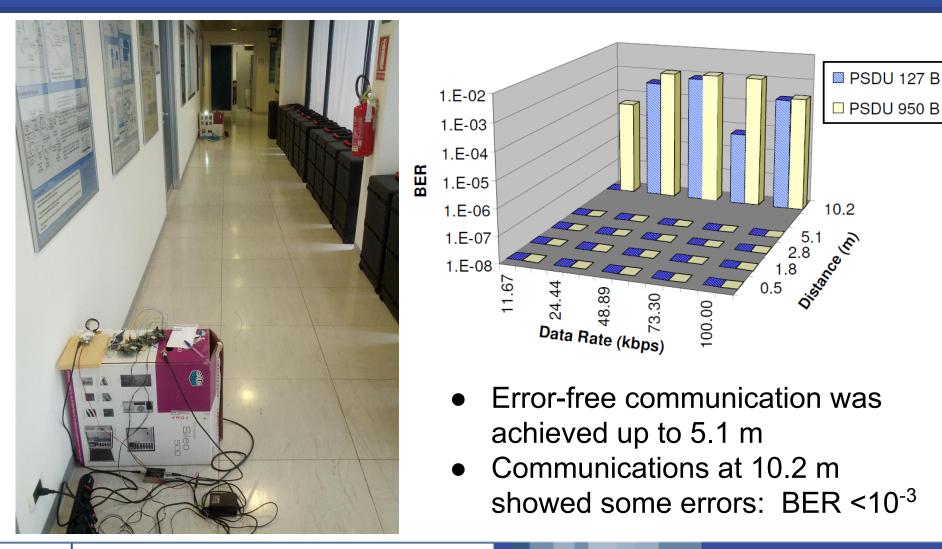
Tampere, Finland, November 7th, 2013

16/21


Mariano Falcitelli - CNIT

Test bench: CODEC processing times

Board	Task	Processing Time (μs)		
	SPI optical transmission ISR	2.6		
Transmitter	RS(15,7) block encoding	20		
	RS(15,11) block encoding	16		
	Viterbi single iteration	15		
	Viterbi complete decoding *	0.27 x 10 ⁶		
	RS(15,7) block decoding without errors	32		
Receiver	RS(15,7) block decoding with errors	72		
	RS(15,7) complete decoding with errors **	0.021 x 10 ⁶		
	RS(15,11) block decoding without errors	18		
	RS(15,11) block decoding with errors	40		


(*)=1023 B PSDU + RS(15,7); (**)=1023 B PSDU.

Test bench: Throughput efficiency

Tampere, Finland, November 7th, 2013

Error-free range measurements: BER

Conclusion

- A half-duplex VLC prototype as first step for C-ITS applications has been realized.
- The device implements PHY I and MAC layers such as conform to the IEEE802.15.7 standard.
- Efficient channel utilization at highest bit rates, when convolutional codes are not used.
- Faster electronic devices are needed to handle in a suitable way the error correction protocols prescribed by IEEE802.15.7 at slow rates.
- The quality of signal transmission is acceptable within 10 meters.
- Improvements of the receiver devices are needed (photodiodes with larger active area and optimized optical systems).
- At now, referring to ITS domain,only I2I communications services are feasible with the current prototype.

Work in Progress

- Transferring the Optical Transmitter/Receiver functions on a FPGA (HW architectures with parallel processing).
- Full Duplex System with full IEEE802.15.7 functions
- Implement the adaptation layer between IPv6 and IEEE802.15.7 to allow the access of VLC technology to the Internet of Things infrastructure.
- Implement the vertical handover between VLC and other media: R/F, IR, ...
- Promote the standard development of VLC for C-ITS at ISO and ETSI Working Groups

Thank you for your attention !

Development of IEEE802.15.7 based ITS services using low cost embedded systems

Mariano Falcitelli mariano.falcitelli@cnit.it http://rtn.sssup.it

cmit

consorzio nazionale interuniversitario per le telecomunicazioni

Tampere, Finland, November 7th, 2013